Speech Recognition using Neural Networks

نویسندگان

  • Joe Tebelskis
  • Raj Reddy
  • Jaime Carbonell
  • Richard Lippmann
چکیده

This thesis examines how artificial neural networks can benefit a large vocabulary, speaker independent, continuous speech recognition system. Currently, most speech recognition systems are based on hidden Markov models (HMMs), a statistical framework that supports both acoustic and temporal modeling. Despite their state-of-the-art performance, HMMs make a number of suboptimal modeling assumptions that limit their potential effectiveness. Neural networks avoid many of these assumptions, while they can also learn complex functions, generalize effectively, tolerate noise, and support parallelism. While neural networks can readily be applied to acoustic modeling, it is not yet clear how they can be used for temporal modeling. Therefore, we explore a class of systems called NN-HMM hybrids, in which neural networks perform acoustic modeling, and HMMs perform temporal modeling. We argue that a NN-HMM hybrid has several theoretical advantages over a pure HMM system, including better acoustic modeling accuracy, better context sensitivity, more natural discrimination, and a more economical use of parameters. These advantages are confirmed experimentally by a NN-HMM hybrid that we developed, based on context-independent phoneme models, that achieved 90.5% word accuracy on the Resource Management database, in contrast to only 86.0% accuracy achieved by a pure HMM under similar conditions. In the course of developing this system, we explored two different ways to use neural networks for acoustic modeling: prediction and classification. We found that predictive networks yield poor results because of a lack of discrimination, but classification networks gave excellent results. We verified that, in accordance with theory, the output activations of a classification network form highly accurate estimates of the posterior probabilities P(class|input), and we showed how these can easily be converted to likelihoods P(input|class) for standard HMM recognition algorithms. Finally, this thesis reports how we optimized the accuracy of our system with many natural techniques, such as expanding the input window size, normalizing the inputs, increasing the number of hidden units, converting the network’s output activations to log likelihoods, optimizing the learning rate schedule by automatic search, backpropagating error from word level outputs, and using gender dependent networks.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Persian Phone Recognition Using Acoustic Landmarks and Neural Network-based variability compensation methods

Speech recognition is a subfield of artificial intelligence that develops technologies to convert speech utterance into transcription. So far, various methods such as hidden Markov models and artificial neural networks have been used to develop speech recognition systems. In most of these systems, the speech signal frames are processed uniformly, while the information is not evenly distributed ...

متن کامل

Speech Emotion Recognition Using Scalogram Based Deep Structure

Speech Emotion Recognition (SER) is an important part of speech-based Human-Computer Interface (HCI) applications. Previous SER methods rely on the extraction of features and training an appropriate classifier. However, most of those features can be affected by emotionally irrelevant factors such as gender, speaking styles and environment. Here, an SER method has been proposed based on a concat...

متن کامل

شبکه عصبی پیچشی با پنجره‌های قابل تطبیق برای بازشناسی گفتار

Although, speech recognition systems are widely used and their accuracies are continuously increased, there is a considerable performance gap between their accuracies and human recognition ability. This is partially due to high speaker variations in speech signal. Deep neural networks are among the best tools for acoustic modeling. Recently, using hybrid deep neural network and hidden Markov mo...

متن کامل

A Comparative Study of Gender and Age Classification in Speech Signals

Accurate gender classification is useful in speech and speaker recognition as well as speech emotion classification, because a better performance has been reported when separate acoustic models are employed for males and females. Gender classification is also apparent in face recognition, video summarization, human-robot interaction, etc. Although gender classification is rather mature in a...

متن کامل

An Information-Theoretic Discussion of Convolutional Bottleneck Features for Robust Speech Recognition

Convolutional Neural Networks (CNNs) have been shown their performance in speech recognition systems for extracting features, and also acoustic modeling. In addition, CNNs have been used for robust speech recognition and competitive results have been reported. Convolutive Bottleneck Network (CBN) is a kind of CNNs which has a bottleneck layer among its fully connected layers. The bottleneck fea...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1995